

TMR versus grazing supplemented with TMR out or into the grazing plot: Productive response

D. A. Mattiauda, J.P. Marchelli and P. Chilibroste.

Department of Animal and Pastures Science Universidad de la Republica URUGUAY

Venezuela* French Guiana Colombia **Ecuador** Peru Brazil Bolivia **Argentina** Chile Uruquay 96 Brandon Ple

Introduction

Dairy Systems in Uruguay:

- Based on pasture and direct grazing
- Restriction pasture allowance is usually supplemented with corn silage and concentrates à offered separated and/or mixed (TMR)
- Cows could modify behavior in order to synchronize nutrients supply and improve performance, when feed sources of the diet are offered simultaneously in space and time (Villalba et al, 2015)

Hypothesis

ü Allocation of TMR simultaneously in the grazing plot will perform better than when it is offered separated from pasture in space and time

Objectives

To study the effect of three contrasting feeding strategies involving TMR and grazing, during the first 60 days in milk of Holstein dairy cows on:

ü productive performance

ü changes in grazing pattern and cow behavior

Materials and methods

- ü Thirty-six autumn-calving Holstein cows
 - \circ 640 ± 49.2 kg LW
 - \circ 2.9 ± 0.37 BCS

ü Randomized in a block design of 3 treatments:

Materials and methods

- ü Fescue based pasture (2nd year)
 - Mean herbage mass 3300 ± 758 kg DM/ha. (over 4 cm)
 - Grazing daily strips; 40 kg DM/cow/d (at 1.7 km)
- Ü Herbage mass was measure weekly (double sample technique adapted with rising plate meter)
- ü Milk yield was registered daily (0430 and 1500 h) and milk composition weekly
- ü Cow BCS was recorded weekly (1-5 scale; Edmonson et al. 1989)
- ü Cow behavior was visually recorded (Chilibroste et al., 2012)
 - o At days 10, 13, 30 and 33 of lactation
 - During the first 4 h (AM) and 3 h (PM) of the grazing sessions
 - o Grazing, eating in feeders and idling every 15 min

Statistical analysis

üData were analyzed in a mixed model üGLIMMIX PROCEDURE (SAS, 2010) üProductive responses:

üModel included treatments, week and their interaction as fixed effects and block as a random

üBehavior variables:

üTo determine the probability of the different events a binomial response distribution and with Logit as a link function was used

üModel included treatments, hour and their interaction as fixed effects

Chemical composition of TMR and pasture

	TMR	Pasture
Dry matter (DM, %)	40.6 ± 0.28	19.9 ± 3.30
Crude protein (CP, %)	14.6 ± 1.36	12.7 ± 1.75
Neutral detergent fiber (%)	39.9 ± 2.15	62.1 ± 2.65
Acid detergent fiber (%)	19.5 ± 2.23	34.5 ± 2.40

Results

Effect of feeding strategy on milk yield, milk composition and BCS of dairy cows

	Treatments (T)				P-value		
	TMR	GR-one	GR-two	SEM	T	W	TxW
Milk yield (kg/d)	35.9 ^a	30.8 ^b	29.7 ^b	0.816	< 0.01	< 0.01	< 0.01
Fat (%)	3.25 ^b	3.67 ^{ab}	3.72a	0.175	< 0.05	< 0.05	NS
Protein (%)	3.24	3.40	3.35	0.079	NS	< 0.01	NS
Lactose (%)	4.80	4.75	4.78	0.041	NS	< 0.01	< 0.01
NEI output (Mcal/d)	25.7a	21.8 ^b	22.0 ^b	1.20	<0.01	NS	NS
Cow BCS	3.09 ^x	2.91 ^x	2.75 ^y	0.145	< 0.07	NS	NS

Could cow behavior partially explain this results?

Probability of cows grazing during the first 4 h of the AM session: GR-one and GR-two

Cow behavior during the first 3 h of the PM session: GR-two cows

In summary

- ü TMR cows produce more milk and milk energy output
- ü Despite GR-two had better opportunity to synchronize nutrients supply, productive performance was not expressed
- ü The behavior of GR-two in the PM grazing session, suggested that cows did not exploit the advantage of a longer time of access to pasture (when compared with GR-one) and spent a lot of time around feeders
- ü Other factors can explain these results, pasture conditions and management, walk distance, cow training...

