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A B S T R A C T

The predictive values of plasma non-esterified fatty acid (NEFA), beta-hydroxybutyrate (BHB), cholesterol, al-
bumin and calcium to predict risk of peripartum diseases in primiparous (PP) and multiparous (MP) Holstein
cows was investigated. Besides it was assessed if the health status interacted with parity on body condition score
and metabolic profiles during the transition period. Dairy cows (126 PP and 182 MP) from a commercial dairy
free stall herd (loose-housing system) were weekly body condition scored and tail bled for metabolites de-
termination from −3 to +4weeks relative to calving. Peripartum diseases were diagnosed by a single trained
veterinarian, while subclinical diseases (ketosis and hypocalcemia) were diagnosed at the laboratory. Cows were
classified as healthy cows, cows with one event, or cows with two clinical events following a prospective ob-
servational cohort study, with only healthy cows enrolled at the beginning of the study. The largest incidence
was for metritis (26.6%) followed by retained placenta (17.2%) and mastitis (15.2%) with no effect of parity,
while subclinical hypocalcemia incidence was greater in MP than PP cows (43% vs 9.5%) respectively. In MP
cows albumin concentrations were predictive for metritis at week−2 and for retained placenta at weeks−2 and
−1, while cholesterol was predictive for mastitis at week−2,−1 and at calving. The interaction between health
status and parity affected all metabolites during the transition period. This study showed a different evolution of
metabolic profiles in healthy and sick cows during the transition according to parity, pointing out albumin and
cholesterol as diseases predictors before calving.

1. Introduction

Over the past decades dairy cows have undergone intensive genetic
selection, which has increased milk yield to a level where the demands
for nutrients from the diet and body tissue reserves often results in ill-
health and infertility (Mulligan and Doherty, 2008). The relationship of
‘the transition cow’ metabolism and the pathogenesis of peri-partum
diseases has increased, and maintaining health and productivity is one
of the most difficult tasks for dairy herds. Approximately 75% of dis-
eases in dairy cows typically happen in the first month after calving
(LeBlanc et al., 2006). These problems are increasingly known to be
rooted in immune function and feed intake 2 to 3 wks before calving,
arguing for the importance of nutritional management of the transition
dairy cow (LeBlanc et al., 2006).

The negative energy balance (NEB) that takes place during this

period is associated with the development of many of these diseases
(Herdt, 2000). Body condition score (BCS) during the transition period
and the risk of peri-partum diseases has been established; e.g., cows
with BCS≥ 3.75 have a higher risk to develop clinical ketosis or dis-
placement of the abomasum (DA) (Seifi et al., 2011). Moreover, a direct
effect of BCS on feed intake was suggested (Garnsworthy, 2006); e.g.,
cows with BCS≤ 3.25 at calving lost less BCS after calving and reached
their maximum dry matter intake (DMI) earlier than cows with higher
BCS. Parity is also a well-known risk factor for some diseases; e.g.,
multiparous cows are more likely to develop ketosis and hypocalcemia
(Seifi et al., 2011; Reinhardt et al., 2011). As NEB is reflected in some
metabolites, many metabolic markers can be used for evaluating the
cow adaptation to the NEB and the risk of peri-partum diseases (Van
Saun, 2009). Elevated serum non-esterified fatty acid (NEFA) con-
centrations 7 to 10 days pre-partum is a risk factor for DA (LeBlanc
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et al., 2005). Also elevated serum post-partum β-hydroxybutyrate
(BHB) concentrations were reported as a risk factor for ketosis (Duffield
et al., 2005; LeBlanc et al., 2005), metritis and mastitis (Duffield et al.,
2009). Moreover, subclinical hypocalcemia may make cows more sus-
ceptible to secondary diseases (Reinhardt et al., 2011), as it reduces the
ability of immune cells to respond to stimuli (Kimura et al., 2006). This
could contribute to infections, such as mastitis or metritis (Martinez
et al., 2012). In the first week post-partum, confined cows with an al-
tered hepatic function had lower albumin and cholesterol concentra-
tions (Bionaz et al., 2007) and grazing dairy cows with severe metritis
or having more than one clinical disease after calving presented lower
post-partum cholesterol concentrations (Sepúlveda et al., 2015). Few
reports on associations of lower prepartum cholesterol or albumin
concentrations and postpartum diseases were found (Kaneene et al.,
1997; Van Saun, 2004). Also Trevisi et al. (2010) reported lower pre-
partum cholesterol concentrations in multiparous cows classified by
their liver activity index as low, but the authors concluded that the lack
of association with udder health was probably due to the limited
number of cows included in the study. An earlier prediction of the
probabilities for disease may enable the farmer to modify the herd
management to improve its health status.

Although there is abundant literature on metabolic markers and
peripartum diseases in dairy cows, we have not found field trial reports
of the effect of parity (primiparous vs multiparous cows) and health
status on metabolic profiles (e.g NEFA, BHB, cholesterol, albumin and
calcium concentrations) determined weekly during the transition
period. Moreover, the evolution of these metabolic markers during the
transition period of healthy and sick cows will allow us to select the
strategic moment for bleeding in order to monitor and predict disease
risk in dairy herds. Thus, the aims of this study were: a) assess whether
the health status (healthy vs sick cows) interacted with parity to affect
BCS and metabolic profiles during the transition period and milk pro-
duction, b) determine and compare the predictive value of metabolic
markers (NEFA, BHB, cholesterol, albumin and calcium) to establish
disease risk during the transition period in primiparous (PP) and mul-
tiparous (MP) Holstein cows.

2. Materials and methods

2.1. Cows and herd management

The study was conducted from October 2014 to September 2015 in
a commercial dairy free stall (loose-housing system) herd in Rio Grande
do Sul, southern Brazil. All procedures were carried out in accordance
with regulations of the Animal Experimentation Committee (SIPPEE
10.059.15 CEUA 0522017 UNIPAMPA, Brazil).

Holstein dairy cows (n=126 PP and n=182 MP) from a 700-cow
herd were selected, with an approximate milk yield of 8000 kg per
lactation. The calving seasons were spring/summer (October 2014 to
January 2015) and autumn/ winter (May to August 2015). The average
temperature-humidity index (THI, Mader et al., 2006) in the autumn
calving season was 72, while in spring calving season was 82. Cows
were evaluated from 3weeks before calving, until 4 weeks after calving.

From day −21 until calving, cows were kept on paddock separately
by parity without significant pasture allowance and were offered
13.3 kg/d of DM as total mixed ration (TMR) including anionic salts in
both calving seasons (2014 y 2015) according to close-up requirements
(NRC, 2001) twice a day at 8:00 and 16:30 h (Table 1). After calving, all
cows were hosted together in a compost barn until day 3 in milk. They
were fed the diet 3 times daily as TMR for ad libitum intake, without
access to pasture according to fresh cows requirements (NRC, 2001) in
collective feeders, at 5:30, 10:00 and 15:0 h, and milked 2 times daily.
The total daily offer of DM was 21.5 kg/d in the spring season (2014)
and 28.9 kg/d in the autumn calving season (2015). Close-up and fresh
cow diet composition is shown in Table 1. Cows had ad libitum access
to water and they received 300mL of propylene glycol, 250 g of

calcium propionate diluted in 1 L water orally and 40 g Calcium glu-
conate subcutaneously at calving. After day 3 in milk, cows were hosted
in a free-stall and were fed the same TMR, but milked 3 times daily
(DeLaval rotary switch 80 stations). Data for 305-d milk yield were
obtained from DairyPlan C-21 software (GEA).

2.2. Study design, diseases recording and sample collection

This study followed a prospective observational cohort study and
only healthy cows were enrolled at the beginning of the study.
Peripartum diseases were diagnosed by a single trained veterinarian
using the following criteria: Clinical hypocalcemia was defined as any
recumbent cow within 72 h after parturition exhibiting anorexia, ner-
vous symptoms, staggering, varying degrees of unconsciousness, and
good response to intravenously administered calcium (Duffield et al.,
1999). Clinical mastitis was characterized by the presence of abnormal
milk or by signs of inflammation in 1 or more quarters, evaluated by the
milking person from calving to 30 days in milk (DIM) at the start of
milking (Duffield et al., 1999). Retained placenta (RP) was defined as
failure to expel the placenta within 24 h after parturition (LeBlanc,
2008). Starting at d 3 until d 21 ± 1 after calving, all cows were
monitored for metritis twice weekly, every Tuesday and Friday by a
veterinarian, using a manual vaginal examination. Presence of ab-
normal vaginal secretion associated with blood Haptoglobin (Hp)
concentration > 1mg/dL, was used for diagnosis of metritis following
Huzzey et al. (2011). Lameness was diagnosed weekly using the scale
from 1 to 5, where grade 1 had no alteration in gait and grade 5 the cow
was severely limping, without supporting the member on the floor.
Cows with lameness were considered those with locomotion score≥ 3
(Bicalho et al., 2007). Left displaced abomasums (LDA) was diagnosed
based on an auscultation of a “ping” during percussion of the left side of
the abdomen. During these health checks, presence of any other clinical
disease(s) was recorded, and also deaths and culling because of health
problems were recorded. Subclinical diseases were diagnosed at the
laboratory based on specific metabolite determination. Subclinical

Table 1
Ingredient and nutrient composition of close-up and fresh cow (calving seasons 2014 and
2015) of the total mixed diets (DM basis).

Item Diet

Close-up 2014 2015

Ingredient, %
Corn silage 57 29 29
Ryegrass haylage – 11 11
Oat hay/ryegrass 20 6 3
Ground corn grain – 19 21
Soybeans hull – – 18
Solvent-extracted soybean meal 10 14 16
Ground wheat grain 10 – –
Citrus pulp – 12 –
Close-up mineral supplement 3 – –
Fresh cow mineral supplement – 2 2

Nutrient profile
Dry mater % 39.84 46.08 56.35
CP % 12.8 13.4 15.2
NDF % 51.8 37.2 39.8
NFC % 26.7 40.6 37.3
Starch % 16.1 21.3 23.7
Ether extract % 3.8 3.4 3.4
NEL, Mcal/kg 1.47 1.68 1.67
DCAD mEq/kg −50 80 100
Ca % 0.63 0.88 0.63
P % 0.44 0.37 0.37
Mg % 0.35 0.20 0.21
K % 1.27 1.20 1.20
S % 0.32 0.22 0.22
Na % 0.10 0.22 0.16
Cl % 0.74 0.57 0.43
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ketosis was defined by BHB > 1.2mmol/L (Duffield et al., 2009) and
subclinical hypocalcemia by calcium≤ 2.0mmol/L (Reinhardt et al.,
2011).

Body condition score (BCS) was determined weekly during the
transition period, using a 5- point scale (Ferguson et al., 1994). In the
same period, blood samples were collected weekly from all cows, from
the coccygeal vessel into 10-mL sterile heparinized tubes, centrifuged at
3000×g for 20min. Plasma was stored frozen (−20 °C) until further
analysis for BHB, NEFA, cholesterol, albumin, Hp and calcium con-
centrations at the animal endocrine and metabolism laboratory, Ve-
terinary faculty, Montevideo, Uruguay. Metabolites were measured by
colorimetric assays on Vitalab Selectra II autoanalyzer (Vital Scientific,
Dieren, The Netherlands) using commercial kits: NEFA, Wako NEFA-HR
(2), Wako Pure Chemical Industries Ltd., Osaka, Japan; BHB, Randox
Laboratories Limited, 55 Diamond Road, Crumlin, Country Antrim,
BT29 4QY, United Kingdom. Albumin, calcium and cholesterol: Wiener
Laboratories S.A.I.C. Riobamba, Rosario, Argentina. Haptoglobin con-
centrations (Tridelta Diagnostics Ltd., Morris Plains, Ireland) were
measured by ELISA (Thermo, Multiskan EX, USA). The inter-assay
coefficient of variation (CV) for all commercial serum controls was less
or equal to 10%.

2.3. Statistical analysis

Cows were classified according to their health status in 3 categories
as “healthy cows”, “1 event” (one clinical event) and “2 events” (more
than one clinical event). The associations between parity (MP and PP)
and health status, and the individual disease outcomes were analyzed
using 2×2 contingency tables generated by the PROC FREQ statement
in SAS (version 9.2; SAS Institute, 2009). From these tables, the Mantel-
Haenszel chi-square test was used to determine the type 1 error risk of
the relationship.

Descriptive statistics were calculated for NEFA, BHB, cholesterol,
albumin and Ca concentrations by week, during close-up period and
further evaluated as continuous outcomes using PROC MIXED, ana-
lyzing their differences between health status by period: “close-up” (−2
and −1week related to calving), “calving” and “fresh cows” (1, 2 and
3weeks post calving). Each period was considered an independent test
because the concentrations of the metabolic markers of interest will
change relative to time from calving and their association with health
status may likely be influenced by time as reported previously (Huzzey
et al., 2011). The model included the fixed effects of parity (PP vs MP),
health status (healthy, 1 event or 2 events), week, calving season
(spring 2014, autumn 2015) and the interaction (parity× health status,
parity× health status×week). Milk production as 305-d milk yield,
was also evaluated using PROC MIXED, considering fixed effects of
parity, health status, calving season and their interactions in the model.

Data were further evaluated using multivariable logistic regression

(MLR) analysis by week (−2, −1 and calving) for health status
(healthy vs sick cows) and for individual outcomes: metritis, RP and
mastitis, considering parity and calving season in the model. Variables
that were not significant (P > 0.05) were removed by manual back-
ward stepwise elimination. Those individual outcomes with low in-
cidence were not evaluated, due to their small number. Odds ratio (OR)
and their respective 95% confidence interval determined by MLR were
used to describe the level of association between the metabolite of in-
terest and the postpartum health outcome, considering the individual
outcome as a binary classification; cows with the individual outcome
and healthy cows (without any other individual outcome).

For metabolites that remained in the final models, receiver operator
characteristic (ROC) curves were constructed to determine area under
the curve (AUC). The cutpoint of the metabolites was estimated by
Youden Index, and the values of sensitivity, specificity, positive and
negative likelihood ratio (LR) were determined using MedCalc V.17.6.
(MedCalc®. MedCalc Software. Acacialaan 22. B-8400 Ostend.
Belgium). Sensitivity was the proportion of animals diagnosed with
metritis, RP or mastitis that were at or above a given metabolite cut-
point, while specificity was the proportion of animals without clinical
disease that were below a given cutpoint (Dohoo et al., 2003).

For all statistical analysis P < 0.05 was considered a significant
effect and P≤ 0.1 as a tendency.

3. Results

From the 308 cows evaluated, 46.7% (n=144) had at least one
clinical event and 1.9% (n=6) were discarded or died within the first
30 DIM. A greater incidence of sick cows was diagnosed in the autumn
calving season compared to the spring season (55.3% vs 30.6%,
P < 0.0001). No interaction was found among calving season and
parity. The number and proportion of cows and their health status
(Healthy, 1 event and 2 events), and individual outcomes (metritis, RP,
mastitis and subclinical hypocalcemia) stratified by parity and calving
season is shown in Table 2. The largest overall incidence was for me-
tritis (26.6%, n=82) followed by retained placenta (17.2%, n=53)
and mastitis (15.2%, n=47), with no effect of parity in any disorder.
The median time of diagnosis of metritis was 9 DIM (range of 5 to 19
DIM), and of mastitis 10 DIM (range of 1 to 25 DIM). Due to the low
proportion of clinical ketosis (n=1), lameness (n=13), displaced
abomasums (n=6) and clinical hypocalcemia (n=4), all conditions
were considered as “others” with an overall incidence of 8.1% (n=25).
Also, subclinical ketosis had a low incidence (3.3%, data not shown).
Considering subclinical hypocalcemia, MP presented greater incidence
than PP cows, being 43% (n=77) vs 9.5% (n=12) respectively,
P < 0.0001.

In Table 3, the analysis of BCS and metabolites according to parity,
health status, week and their interactions during the close-up period, at

Table 2
Incidence of clinical and subclinical event during the transition period by parity [primiparous (PP), n=126; multiparous (MP), n= 182] and calving season.

Disease and health status Spring Fisher Autumn Fisher

PP MP PP MP

n (%) n (%) P n (%) n (%) P

Healthy 31 (73.81) 46 (66.67) NS 38 (45.24) 49 (43.36) NS
1 event 10 (23.81) 16 (23.19) NS 29 (34.52) 37 (32.74) NS
2 events 1 (2.38) 7 (10.14) NS 17 (20.24) 27 (23.89) NS
Metritis 2 (4.76) 6 (8.70) NS 33 (39.29) 41(36.28) NS
RP 4 (9.52) 10 (14.49) NS 16 (19.05) 23 (20.35) NS
Clinical mastitis 3 (7.14) 7 (10.14) NS 13 (15.48) 24 (21.24) NS
Othersa 3 (7.14) 9 (13.0) NS 1 (2.56) 12 (19.67) 0.01
Subclinical hypocalcemia 6 (14) 27 (39.7) 0.005 6 (7.4) 50 (45) < 0.0001
Total n of PP and MP 42 69 84 113

a Others include: clinical hypocalcemia, ketosis, DA and lameness.

G. Ruprechter et al. Research in Veterinary Science 118 (2018) 191–198

193



calving and fresh cow is shown. BCS and concentrations of NEFA and
BHB were affected by parity during the entire transition period, while
calcium tended to be affected or was affected during the close up or
calving respectively. Cholesterol concentrations tended to be affected
by parity at calving and albumin was affected by parity but only in fresh
cows. Neither BCS nor the concentration of the different metabolites
were associated with health status during the close-up period, but
health status affected NEFA and BHB concentrations at calving and
albumin and cholesterol concentrations in fresh cows (weeks +1, +2
and week +3 for albumin and weeks +2 and +3 for cholesterol).

The evolution of BCS, NEFA and BHB concentrations during the
transition period is shown in Fig. 1. Although MP cows presented lower
BCS than PP cows, they presented a similar profile, being greatest in the
close up period, decreasing until the end of the experiment (week +3),
not recovering the initial BCS. During the transition period, the

differential NEFA profiles according to health status and parity is shown
in Fig. 1 (C and D). All MP cows increased their NEFA concentrations
from week −1 to week +1, but sick MP cows presented higher NEFA
concentrations than healthy MP cows at calving (P < 0.05). Also at
week +1, MP cows with 2 events presented higher NEFA concentra-
tions than healthy and 1 event MP cows (P < 0.05). In addition,
healthy MP cows decreased their NEFA concentrations by week +3,
while sick MP cows maintained higher NEFA concentrations
(P < 0.05). In PP cows, although NEFA concentrations increased from
week −1 to week +1, healthy PP cows presented the greatest NEFA
concentrations at week +1 in comparison to sick PP (P < 0.05) and at
week +3 there were no differences between the three health status
categories. BHB profiles were similar in both parities during the tran-
sition period. While PP cows with 2 events presented higher BHB
concentrations than healthy PP and 1 event cows at calving
(P < 0.05), MP cows with 2 events had greater BHB values at week+3
than healthy MP cows (P < 0.05).

The profiles of cholesterol, albumin and calcium concentrations
during the transition period are shown in Fig. 2. Cholesterol con-
centration decreased at calving and increased during postpartum,
reaching to greater values than at the start of close-up period, regard-
less of parity or health status. Healthy cows (MP and PP) presented
higher cholesterol concentrations than sick cows (MP and PP) at week
+2 and +3 (P < 0.05), and healthy MP more cholesterol concentra-
tions than sick MP at week −1 (P < 0.05). Healthy MP cows had
higher albumin concentrations than sick MP cows during close-up and
fresh period (P < 0.05, Fig. 2 C and D). Moreover, 1 event MP cows
had also greater albumin concentrations than 2 events MP cows
(P < 0.05) during the fresh period. In PP cows, no differences in al-
bumin concentrations were found between healthy and 1 event PP cows
during the experiment, but these two groups had greater albumin
concentrations during the fresh period than 2 events PP cows
(P < 0.01). Calcium concentrations declined sharply at calving in all
MP cows, whereas it was not as evident in PP cows, reflecting the effect
of parity at this time (Fig. 2 E and F). In spite of the decrease of calcium
concentrations at calving in all MP cows, healthy MP cows had higher
concentrations than sick MP cows (P < 0.05).

The logistic regression analysis including all data in PP and MP cows
of both calving seasons showed that albumin concentrations on week
−2 was predictive for disease, as the decrease in one unit of albumin
was associated with an odd ratio (OR) of 1.27 (95% CI: 1.01 to 1.60,
P=0.03) in 2 events cows when compared to healthy cows. Similarly,
cholesterol concentrations were predictive for mastitis being the OR
2.24 (95% CI: 1.06 to 4.74, P= 0.03).

As calving season and parity affected metabolite concentrations
during close-up and calving (Table 3), MLR analysis was performed for

Table 3
Probabilities for fixed effects during close-up (weeks −2 and −1), Calving and Fresh cow (week +1, +2 and +3).

Effect Albumin Cholesterol Calcium NEFA bHB BCS

Close up Parity 0.1396 0.3274 0.0697 0.0004 <0.0001 0.0017
Health status 0.4507 0.4023 0.8035 0.3447 0.5279 0.6181
Week 0.6204 0.0012 0.0008 0.3577 0.3758 0.3233
Calving season < 0.0001 0.0086 0.1759 <0.0001 0.1871 0.0334
Parity vs healthy 0.166 0.4056 0.1668 0.2453 0.4322 0.4465
Parity vs healthy vs week 0.124 0.726 0.0539 0.0619 0.4258 0.8068

Calving Parity 0.6268 0.0828 <0.0001 <0.0001 <0.0001 0.0125
Health status 0.7026 0.7858 0.2183 0.0024 0.0645 0.9051
Calving season < 0.0001 <0.0001 0.0526 <0.0001 0.3657 0.0748
Parity vs healthy 0.0775 0.7167 0.0944 0.3433 0.1448 0.6115

Fresh cow Parity 0.0065 0.568 0.316 0.017 < 0.0001 <0.0001
Health status < 0.0001 <0.0001 0.1913 0.834 0.1972 0.5719
Week 0.0086 <0.0001 <0.0001 <0.0001 0.2537 <0.0001
Calving season < 0.0001 0.5844 0.286 <0.0001 <0.0001 0.7924
Parity vs healthy 0.1785 0.6387 0.4932 0.1287 0.7334 0.2148
Parity vs healthy vs week 0.1332 <0.0001 0.5265 0.0079 0.0127 0.2353
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each cohort and parity separately. In cohort 2014, there was no me-
tabolite diseases predictor for PP or MP cows. In cohort 2015, sig-
nificant effects were found only in MP cows. Albumin concentrations
were predictive for metritis (OR [IC]); 1.31 [1.05–1.62] (P < 0.01)
and RP; 1.38 [1.04–1.81] (P < 0.05) at week −2 and predictive for
RP; 1.26 [1.01–1.57] (P < 0.05) at week −1. Also cholesterol was
predictive for mastitis; 4.29 [1.26–14.61] at week −2, 6.32
[1.81–22.08] at week −1 and 9.01 [1.01–42.28] at calving
(P < 0.01).

The AUC of the albumin and cholesterol plasma concentrations, as
well as values of sensitivity, specificity, positive and negative likelihood
ratio (LR) of the cutpoints are shown in Table 4. As shown in Fig. 3, the
closer the ROC curve is to the upper left corner, the greater the accuracy
of differentiation between cows with and without the heath outcome
(metritis, RP or mastitis). Thus, the test is perfect to distinguish between
two groups if AUC is 1 and less accurately if AUC is 0.5–0.7, as was the
case of the present study.

Milk production was affected by parity, calving season and health
status (P < 0.05). Primiparous cows produced less milk than MP
(6866 ± 272 vs 8341 ± 213 L, P < 0.0001) and production was
greater in the autumn calving season compared to the spring season

(8360 ± 188 vs 6789 ± 278 L, P < 0.0001). Also, healthy cows
produced more than sick cows (P < 0.05), but 1 or 2 events cows did
not differ in milk production among them (8165 ± 199, 7547 ± 276
and 7098 ± 387 L for healthy, 1 or 2 events cows respectively).

4. Discussion

As far as we know this is the first study reporting that the evolution
of metabolic profiles in healthy and sick animals during the transition
period varies according to parity. Moreover, prepartum albumin and
cholesterol concentrations were predictors for metritis, RP and mastitis
but only in MP cows.

The overall incidence of illness in our study (46.4%) was similar to
the reported for lactating dairy cows by others (58%, Van Saun, 2004;
30 to 50%, LeBlanc, 2010). A higher incidence of illness was found in
the autumn calving season (55.3%) associated with the higher milk
production in this calving season. It has been reported that this asso-
ciation is not due to the higher milk production per se, but probably
because of a higher rate of acceleration in milk yield (Ingvartsen, 2006).
The greater milk production in autumn calving is consistent with the
total DM offer (although TMR was offered ad libitum 3 times daily,
autumn cows had 7.4 kg DM more than spring cows) associated to the
better THI than the spring season, as in the latter the THI exceeded the
comfort threshold (> 72) for milk production (Polsky and von
Keyserlingk, 2017). In our study, the metritis incidence was 26.6% si-
milar to the reported (21%) by Hammon et al. (2006), been lower than
(40%) reported by Giuliodori et al. (2013), but higher than found by
others (0.7 to 2.2%, Rajala and Gröhn, 1998; Bruun et al., 2002). In-
deed, the incidence of metritis varies among studies and as Huzzey et al.
(2007) stated, the diagnostic criteria may be poorly described among
studies, which makes it difficult to compare. Overall, incidence of RP in
the present study was 17.2%, slightly higher than the reported (3 to
13%) by Ingvartsen et al. (2003). Many risk factors were associated
with RP including abortion, dystocia or induced parturition, twins,
stillborn calf, milk fever, and increasing age (Correa et al., 1993; Grohn
and Rajala-Schultz, 2000) been therefore RP considered multifactorial.
The clinical mastitis overall incidence found in this study (15.2%) was
in the range (7 to 44%) reported by Ingvartsen et al. (2003) or similar to
the reported (11 to 24%) in grazing dairy cows (Bargo et al., 2009;
Ribeiro et al., 2013; Sepúlveda et al., 2015).

Clinical hypocalcemia was very low (1.3%), because of this, it was
considered together with DA, lameness and clinical ketosis. The in-
cidence of subclinical hypocalcemia and their higher presentation in
MP as expected, was similar to the reported by others (Goff, 2006;
Reinhardt et al., 2011), and is consistent with the management for
hypocalcemia prevention at the herd as described in materials and
methods. The very low incidence of clinical, subclinical ketosis and DA
(0.3%, 3.3% and 2% respectively) in the present study reflects the
preventive management of the herd, as all cows received 300mL of
propylene glycol at calving. Indeed, a high incidence of these diseases
has been reported, 8.9 to 34% clinical ketosis (Ingvartsen, 2006;
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Table 4
Test performance for albumin and cholesterol to diagnose metritis, RP or mastitis in close-up and calving.

Test performance (CI 95%)

Outcome Metabolite Week AUC Cutpoint Se (%) Sp (%) +LR −LR

Metritis Albumin (g/L) −2 0.66 (0.55–0.77)⁎⁎ ≤33.1 42 (24–61) 91 (79–97) 4.72 0.70
RP Albumin (g/L) −2 0.70 (0.55–0.80)⁎ ≤34.2 61 (36–83) 80 (65–90) 3.06 0.49

−1 0.68 (0.54–0.78)⁎ ≤34.0 54 (32–76) 83 (69–92) 3.14 0.55
Mastitis Cholesterol (mmol/L) −2 0.71 (0.60–0.77)⁎⁎ ≤2.4 79 (54–94) 60 (44–74) 1.97 0.35

−1 0.70 (0.60–0.81)⁎⁎ ≤2.3 73 (50–89) 61 (45–75) 1.86 0.45
0 0.68 (0.56–0.78)⁎ ≤1.7 58 (37–78) 72 (57–83) 2.04 0.58

⁎ P < 0.05.
⁎⁎ P < 0.01.
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Rushen et al., 2008), 30% subclinical ketosis (Duffield et al., 1997) and
increasing incidence of left DA (LDA) in the last decade, from between 1
and 2% to 5 to 7% (LeBlanc et al., 2005). Moreover, clinical and sub-
clinical ketosis has been associated with development of LDA (LeBlanc
et al., 2005) and thus, our findings agree with this observation, taken
into account the low incidence of both diseases. Ingvartsen (2006) re-
ported over conditioning at calving, excessive fat mobilization, low
nutrient intake, diet specific factors or management as major factors
increasing the risk of ketosis and fatty liver. Also, Seifi et al. (2011)
reported in the first and second weeks postpartum, that fat cows were at
significantly higher risk of developing clinical ketosis. Even more, ele-
vated prepatum NEFA and postpartum NEFA and BHB concentrations
were also used to identify cows at risk of developing diseases (LeBlanc
et al., 2005; Ospina et al., 2010a). This was not the case of the present
study as NEFA and BHB concentrations during the close-up period were
not predictive. This could be the result of the cows being in a comfor-
table and low-stress environment, as discussed by Drackley et al. (2001)
and Ospina et al. (2010b). Therefore, considering the low BHB and
NEFA concentrations measured in close-up and low BHB concentrations
and good BCS during the transition period, we can suggest a good en-
ergy management of transition diet and ketosis prevention at calving,
experimenting cows a mild NEB. This may be the reason of the low
incidence of ketosis and DA found in the present study and BHB and
NEFA variables as not illness predictive in contrast with the cited lit-
erature.

Albumin concentrations were predictive in MP cows for metritis and
RP at week −2 and for RP at week −1. There are very few reports on
this metabolite and disease prediction. The data are consistent with Van
Saun (2004) who reported that cows with albumin concentrations <
32.5 g/L during close-up (3 to 21 days prepartum) were 1.46 (95% CI:
1.04–2.04) times more likely to experience a postpartum disease event.
Indeed, albumin concentrations reflect a good nutritional early dry and
close-up management, as the use of blood chemistries (among others;
albumin) in the form of metabolic profiles to determine nutritional
status has been advocated (Payne et al., 1970; Van Saun, 2004). Also
greater albumin concentrations reflect a healthy liver, as albumin is
considered a negative acute phase protein, and decreases in cows with
altered hepatic function (Bionaz et al., 2007). The association found
among albumin concentrations at week −2 -when all cows were
clinically healthy- with pospartum health output, and the fact that al-
bumin determination is an easy and cheap technique, suggest that it
could be a relevant tool to monitor herd health status. Also cholesterol
concentrations resulted predictive for mastitis, during close-up and at
calving, as cholesterol concentrations≤ than 2.4, 2.3 or 1.8 mmol/L at
weeks −2, −1 or calving respectively were 4.3, 6.3 or 9.0 times more
likely to experience mastitis as calving approaches. In reference to this,
we agree with Kaneene et al. (1997), who reported that cows with
lower prepartum cholesterol concentrations are more likely to experi-
ence mastitis, metritis or RP postpartum. The decreases in cholesterol
concentrations during the close-up period can be explained by the de-
crease in dry matter intake (DMI) during this time (Janovick Guretzky
et al., 2006) and also DMI has been associated with disease develop-
ment; sick cows consume less feed compared to healthy cows during the
transition period (Huzzey et al., 2007). In contrast, Amadori et al.
(2015) did not found that cholesterol concentrations were predictive for
diseases, while Quiroz-Rocha et al. (2009) reported greater prepartum
cholesterol concentrations in cows presenting RP. It should be taken in
consideration that the former study included 75 multiparous cows from
26 different herds, while the latter included 1038 (primiparous and
multiparous) cows from 20 herds but only RP was registered. Taking
into account the performance of albumin and cholesterol to predict
metritis, RP or mastitis, although AUC indicated median accuracy (0.66
to 0.71), data of sensitivity, specificity and LR are in the order of other
metabolites (Geishauser et al., 1997b; LeBlanc et al., 2005). Indeed, no
reports on albumin and cholesterol parameters were found, the sensi-
tivity reported of BHB and NEFA to predict LDA was 48 and 56%
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respectively, while specificity was 80 and 78% and LR=2.4 and 2
respectively (LeBlanc et al., 2005).

The metabolic adaptation to the transition period was strongly in-
fluenced by parity as reflected by BCS and all metabolic profiles, as
cited by others (Wathes et al., 2007; Adrien et al., 2012). In the present
study, PP cows had higher BCS than MP cows, being their respective
BCS in the target established as the optimum for both categories as cited
by Garnsworthy (2006). Although both categories increased their NEFA
concentrations, due to the NEB, MP cows had a greater degree of mo-
bilization probably due to the greater energy demands for milk pro-
duction as shown in this study. Interestingly, although no differences
were found in NEFA concentrations in PP cows, sick MP presented
higher NEFA than healthy MP cows at calving, and moreover, NEFA
concentrations remained greater in 2 events cows than healthy and 1
event cows in the first week postpartum. Elevated NEFA was associated
with immune dysfunction around calving (Kehrli et al., 1989; Hammon
et al., 2006).

Cholesterol and albumin profile was affected by health status in
both categories until the end of the study, as sick cows presented lower
concentrations of both metabolites. This reflects the greater metabolic
challenge faced by cows who become sick during the transition, being
worse for cows with more than one clinical event reflecting the no re-
covering of their DMI. This agree with Huzzey et al. (2007) who stated
that sick cows consume less feed compared to healthy cows during the
transition period. Interestingly, cholesterol and albumin were the dis-
ease predictors detected in the close up but only in MP cows. The
finding that those clinically healthy MP cows– but not PP cows- during
the close up that will become sick later (during fresh period) had lower
concentration of these metabolites could be associated to a worse re-
covery from previous lactation and/or inadequate management during
far off dry period. Data is also consistent with NEFA profiles, as sick MP
cows – especially cows with two events- had lower albumin and greater
NEFA concentrations. These associations have been already reported
(Van Saun, 2004). Overall, the worse metabolic profile (NEFA, cho-
lesterol and albumin) found in sick cows during fresh period is con-
sistent with the lower milk production found when compared to healthy
cows, as reported by Ospina et al. (2010b).

Parity also affected calcium profile as expected. Reinhardt et al.
(2011) reported that the incidence of subclinical and clinical hypo-
calcemia increases with age. The MP cows had lower calcium levels
mainly at calving due to greater milk production and also because the
normal homeostatic response to hypocalcemia is decreased with age
resulting in greater or prolonged hypocalcemia in older animals
(Reinhardt et al., 2011). Also hypocalcemia reduces feed intake so that
greater body fat mobilization occurs in early lactation (Goff, 2008). In
the present study while no differences were found in sick and healthy
PP cows, sick MP cows presented lower Ca and higher NEFA con-
centrations at calving. Moreover, hypocalcemia significantly increases a
cow's susceptibility to RP, metritis and mastitis (Curtis et al., 1983,
1985). Indeed, MP cows with these diseases had lower calcium con-
centration at calving, but this was not the case in PP cows and we have
no obvious explanation for this finding. It should be also taken into
account that the activation of the immune system could result in lower
calcium levels (Waldron et al., 2003).

5. Conclusion

In summary, prepartum albumin and cholesterol concentrations
were predictors for metritis, RP and mastitis in MP cows showing a mild
negative energy balance in terms of NEFA, BHB and BCS profiles.
Moreover, it is shown that the evolution of metabolic profiles in healthy
and sick cows during the transition period varies according to parity
and is associated with lower milk production.
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